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described by continuous functions.
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1. Introduction

This is a continuation of previous papers [1,2] in
which the physical significance of the classical
Rayleigh-Sommerfeld and Kirchhoff diffraction
integrals was assessed and their suitability for compu-
tations in the near zone was analyzed. The need for
such computations arises, for example, in the evalua-
tion of radiometric diffraction errors, where it is neces-
sary to know the transmission coefficients of the aper-
tures used for the measurements. The computation of
these coefficients is a near-zone task even for large
aperture-detector distances.

The specific situation considered is a plane aperture
A contained in an infinitesimally thin screen S that
occupies the xy-plane of a Cartesian coordinate system
and is illuminated from the half space z<0 by a
normally incident monochromatic plane wave with
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irradiance E, and wavelength A. The resulting optical
field is denoted by a scalar wave function,

U(P) = JE,u(P),| u(P)| <I, ¢y

and is expressed in the Rayleigh-Sommerfeld theory in
terms of the surface integrals,

k ikOP
u (P == [dQ GQP , 2>0, (2a)
A
1 9 " 1 duy
OP)=— [dQ = =T 250
s (P) 275;[Q 2 Cor) T 0@

where a metallic screen illuminated by p- or s-polarized
light is assumed.' The corresponding expression in

1 .
See comments in Sec. 4, below.
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Kirchhoff's theory, which is usually associated with
black screens, is

ikQP

() == [aQ [ik-21]

(S

oP

(20)

1 s
L PP, 250,

In these equations, A denotes the aperture area,
P = (x,y,2) is the point of observation, Q = (&,n,0) is a
point inside the aperture, QP is the distance between
these points, dQ is the surface element at Q, k=27/A
is the circular wave number, and the time dependence
of the field is assumed as e ",

Equations (2a,b) were reduced in Ref. [1] to previ-
ously unknown single integrals for the respective cases
of circular apertures and apertures bounded by straight
lines, and these were used for numerical computations
of u'?) and u}} that involved no simplifying assump-
tions and could be performed for arbitrarily small
distances z from these apertures. The numerical
results obtained were everywhere finite, free of singu-
larities, and confirmed the well-known prediction that
u'?) and u') reproduce the boundary values assumed
in their derivation (du'%/dz — ik and uy) —1 as
z—0) but not the compatible values (uy— 1and
U'we/0z — ik) which are implied in the classical postu-
late that the aperture field is the same as the un-
perturbed geometrical field incident on the screen.
These inconsistencies obscured the differences between
the Rayleigh-Sommerfeld and Kirchhoff integrals in
the immediate proximity of the screen and made it
impossible to assess their physical significance without
additional considerations.

This impasse was overcome in Ref. [2] by evaluating
Egs. (2a,b) for the special case of a diffracting half
plane and comparing them to the corresponding values,
u? and u{) given by Sommerfeld’s rigorous theory
of half-plane diffraction [3,4]. The agreement was
remarkably good on the positive side of the screen,
where the differences (1" —u{**")and their derivatives
were negligibly small even at sub-wavelength distances
z. Thus, it was decided that the aperture values given by
the Rayleigh-Sommerfeld integrals are consistent with
Sommerfeld’s rigorous theory, so that attempting to
improve them would be pointless.

Accordingly, it became apparent that the real
problem with the Rayleigh-Sommerfeld and Kirchhoff
theories was not their failure to reproduce the assumed
boundary values but these boundary conditions them-
selves. The classical theories involve “inclination
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factors” which explicitly preclude a backward motion
of diffracted light and, thus, any perturbation of the
geometrical field on the source side. On the other hand,
Sommerfeld’s rigorous theory showed that the incident
light is modified by diffraction before it reaches the
screen, and therefore the notion of an unperturbed
incident field is abandoned in this paper by adding a
diffraction term to the geometrical field on the source
side.

The comparison with Sommerfeld’s theory also sug-
gested the need for a further modification of the classi-
cal theory. The optical field specified by the rigorous
theory is expressed in the form u{""=u iy, where
u{ obey the same boundary conditions as the
Rayleigh-Sommerfeld integrals and their components
ug and g propagate in the opposite directions of the
incident field and its reflection from the screen and are
mutually incoherent. In this paper, the Rayleigh-
Sommerfeld integrals will likewise be resolved into for-
ward and reverse components defined by

1 ' 1
_ (r) (s) N (r)
Uy —5(”Rs titpg) 5 U =— (U

5 (3)

—ul), z>0,

where the subscript K is used because the forward wave
function on the left-hand side of this equation happens
to be the same as the Kirchhoff diffraction integral,
Eq. (2¢). The effective, time-averaged flow of field
energy is then given by the squared moduli of these
functions, so that the mutually incoherent, forward and
reverse irradiances incident on any given area element
dxdy are given by

E=E,|u [*, E=E,|i [*, z>0. (3b)

Finally, these quantities will be extended into the
source space by matching functions so that the overall
field is continuously differentiable’ in the aperture
plane and the bidirectional transport of energy through
the aperture is also expressed by continuous functions.
The modified theory presented in this paper is valid for
normally incident light but can easily be adapted for
oblique angles of incidence. As will be shown, it
becomes indistinguishable from the usual Fresnel
approximation in the mid zone z >> A, and here the
latter can be used with confidence.

% That is, continuous with continuous first derivatives. The purpose
of the derivations in this paper is to make the overall field continu-
ously differentiable with respect to z. Continuity with respect to
x and y is assured as the diffracted components of the field will be
expressed in terms of Eqgs. (2a-c) and obey the wave equation.
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2. Modified Field Expressions

2.1 Derivations

In addressing the problem of diffraction on the
source side of a plane metallic screen illuminated
by normally incident parallel light, it is frequently
assumed that

PPs) —

(p.s)
ul,z>0, (4a)

e te™ 4y 2 <0

E)

where v is the total field, u”* denotes the field
components due to diffraction, and € xe™ is the
unperturbed geometrical field on the source side. These
assumptions appeared first in Rayleigh’s papers [5,6]
on diffraction by infinitesimally small apertures and
show that a continuously differentiable solution for
v®) must obey the boundary conditions

(») (p)
ufp):2+uip), a’g-_:a;—*, Z=0, (4b)
)z 4
) (s) ) P ()
U =4 gf =ik + g* , z=0. (4¢)
1z Z

These conditions were used by Rayleigh to derive the
initial terms of Taylor expansions for u'”* for slits
and circular apertures with dimensions smaller than the
wavelength of light. Additional higher-order terms
were calculated by Sommerfeld [4], Bouwkamp [7],
and others.

As mentioned above, the Rayleigh-Sommerfeld
integrals, Eq. (2a,b), will be retained in this paper by
assuming

(pss)_ 5, (P>5)
u+pS_uRpSS (xayaz) ’ Z>On

(52)
and then the second condition in Eq. (4b) and the first
condition in Eq. (4c) will be satisfied by also assuming

) =u§fs)(x, v,-z), z<0. (5b)

u'? = —u]({;)(x, V,—2), U’

However the two remaining conditions in Egs. (4a,b)
are still not satisfied, so that dv ©/9z and v © will still
be discontinuous in the aperture plane.

This failure of Egs. (4a) can be attributed to the fact
that the Rayleigh-Sommerfeld integrals are composite
quantities which can be resolved into the forward and
reverse field components u, and i, in Egs. (3a); that is,

(n_ 5 () . :
ug=u,+u, and uye=u,—1i, . There are no physical
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reasons why these sums and differences should be
continuously differentiable for z =0, but on the other
hand this must be required of uy and i in order to
correctly account for a continuous transport of energy
through the aperture. To satisfy this requirement,
we retain Eq. (5a) but reverse the signs of ¢ and
u') in Egs. (5b), so that

RS

u? = ) (x,,-2), 1 == (x,3,-2) , 2<0. (6a)
Hence, by applying Egs. (3a) and letting v = %(V(p)""’(‘v) ),
D= i(v(p) _ v(s))

2 B

y= u.K(x,y,z) , z>0, (6b)
= ¢ +u(x,y,-2), z<0,

V=u(x,y,2), >0,

(6¢)

- “+u (x,y,-2), 2<0.

Now, it may be recalled that the Rayleigh-Sommerfeld
integrals obey the boundary conditions assumed in their
derivation; that is,

(p)

. . u
ul) = jf—2%
d

e =1inA,=0on S, z—0, (6d)
zZ

and hence it follows at once that the scalar field speci-
fied by Egs. (6b,c) is continuously differentiable in the
aperture plane. Likewise, the corresponding forward
and reverse irradiances,

E=lu,(x,y,2)[, z>0,
| u (x,1,2) | (7a)

=|e* + 1y (X, y,—2) *, z<0,

E=liy(xy2)F, 2>0, (7b)

= _eiib+uK(xaya_Z)|2> z<0 P

are continuously differentiable, thus implying a smooth
bidirectional transport of energy through the aperture.

Equations (6b,c) and (7a,b) represent the key find-
ings of this paper. It should be noted that in these
expressions the roles of uy and iy are reversed on
opposite sides of the screen. That is, iy appears in the
expressions for the forward field quantities uy and E,
and vice versa. The general properties of these
modified field quantities can readily be predicted
from the results reported in Ref. [1]; namely, that
the differences between the Rayleigh-Sommerfeld
integrals %) and u{} are pronounced only in the
immediate proximity of the screen and vanish in the
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Fresnel approximation. Thus, a bidirectional exchange
of energy between the positive and negative sides of the
aperture occurs only in the near zone, long as i (x,y,|z|)
is appreciably different from zero for values of |z| on
the order of a few wavelengths. In the Fresnel limit on
either side of the aperture plane (|z| >> 1) the forward
and reverse fields are unidirectional, and the forward
field is reduced to the standard expressions in terms of
Fresnel integrals for slits and Lommel functions for
circular apertures [8] for z > 0, and to the unperturbed
geometrical field for z<0. Similarly, the reverse
Fresnel field is zero for z> 0 and equal to a Fresnel
diffraction pattern superimposed on the reflected
geometrical field for z <0.

2.2 Numerical Examples
2.21 Slits

As an illustration of the behavior of the modified
field expression on both sides of the aperture plane,
Figs. la-c show the forward irradiance profiles
[E(x,z) vs x/w]® for a slit of width 2 w=10 A and for
varying distances +z from the aperture plane. The
numerical values shown in these figures were comput-
ed using Egs. (3a) and (7a) in conjunction with the
expressions for u %" derived in Sec. 3.3 of Ref. [1].

Figure la shows that, for z==+ 0.01 A, the modified
field irradiances are manifestly continuous inside the
aperture (x/w < 1) and that a modulation of the incident
field by diffraction also occurs on the opaque portion of
the screen (x/w < 1). For z == A, shown in Fig. 1b, the
diffraction profile on the positive side of the screen is
already significantly altered in that more light is
spreading into the shadow, whereas on the negative
side the modulation of the field is diminished. Finally,
for z=+10 A as shown in Fig. lc, the profile on the
positive side is similar but not yet equal to the Fresnel
approximation (F, shown as a dashed line) and the mod-
ulation of the incident field on the negative side is very
small. This confirms the expectation that the modified
theory affects only the positive and negative near zones
in which the Fresnel approximation does not apply.
For the slit width assumed here, it is estimated that
the Fresnel limit is reached, within 1 % or better, for
|z| =100 A.

3 Because of the two-dimensional nature of the diffraction patterns
discussed in the remainder of this paper, the y-coordinate will be
omitted from here on.
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2.22 Circular Apertures

The numerical data presented in Figs. 2 and 3 illus-
trate the bidirectionality of the field in the positive and
negative near zones of a circular aperture of width
2 w=10 A. The data were computed using the mathe-
matical expressions derived in Sec. 3.2 of Ref. [1].

Figures 2a,b show the forward and reverse axial irradi-
ances £(0,z) and £(0,z) for the range —10 A <z < 10 .
as given by the closed expressions

E(O,z):l—(l+%) cos[ k(W — 2)] +%(1 +VZ)2’ (8a)

E(0,z2)

1 Z ., _ ~
Z(I_W)’ W=Nw -7 (8b)

which are valid for positive and negative values of z
and follow readily from Egs. (9a,b) of Ref. [1] and
Egs. (7a,b), above. In Fig. 2a, the modification of the
incident geometrical field is evidenced by the onset
of pronounced oscillations of the forward irradiance
E for z<0. In Fig. 2b, the small but finite values of
E for z<0 demonstrate again that the energy flow is
bidirectional and the reverse field reaches into the
positive near zone.

It will be noticed that the reverse axial irradiance
E(0.2) in Fig. 2b exhibits no oscillations with respect to
z. This is due to the fact, illustrated in Figs. 3a and b,
that E(x,z) always has a maximum for x=0. On the
source side, this maximum lies in the reflection shadow
and is much smaller than the main diffraction pattern
formed in the region x/w > 1.

3. Transmission Coefficients

The transmission coefficient 7 of a diffracting aper-
ture is defined as the radiant flux transmitted into the
positive half space, divided by the radiant flux incident
upon it in the limit of geometrical optics. Thus, for a
plane aperture of area 4 and normally incident parallel
light of unit irradiance,

T =% {dQ Q). (9a)

and for two-dimensional apertures of width 2 w which
are centered on the coordinate origin, as discussed in
this paper, this is further reduced to

1% 2
T=E£dé lu (E,0)], (9b)
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Fig. 1. Forward irradiance profiles on opposite sides of the aperture plane for a
slit of width 2w=10 A. (a) z=%0.01 A, (b) z=% A, (¢) z==+ 10 A, F = Fresnel
approximation.
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Fig. 2. Variation of axial irradiance on opposite sides of the aperture for a circular
aperture of diameter 2 w = 10 A. (a) Forward irradiance E, (b) reverse irradiance E.

where Eq. (3b) was used and the integral over 1 was
evaluated as 2 w. According to Eq. (3a) one finds

=L Jag [im &2, 250, 9
4w 0 z—0

Here, the aperture value of ul;} was substituted

from Eq. (6d) in order to avoid computational problems
that would otherwise arise from singularities for very
small values of z. The computation of u'% involves
lesser singularities and could be performed reliably
down to z = 0.0003 A. Trial computations indicated that
the limiting value of 7 defined by Eq. (9¢) was reached
at the 0.1 % level for z < 0.003 A, and consequently the
results presented below were computed for z = 0.001 A.
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The numerical results thus obtained for the trans-
mission coefficients of circular apertures and slits are
shown in Fig. 4 for the range 0 </iw <5 m. In both
cases, these transmission coefficients approach the
limit 7= 0 for kw =0, and for larger values of kw they
exhibit a damped oscillatory behavior. In the case of
circular apertures the extremes of 7 occur near kw =T,
27, ..., whereas for slits they are less pronounced
and occur near kw =0.55m, 1.1 &, ...For large values
of kw outside the range shown in Fig. 4 both approach
the limit 7= 1, and further computations showed that
near kw =100 © the oscillations of 7 are still on the
order of 1 % for circular apertures and less than 0.1 %
for slits.
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Fig. 3. Reverse irradiance profiles on opposite sides of the aperture plane for a
circular aperture of diameter 2 w=10 4. (a) z= A, (b) z=-A.

1.5 -
Circular Aperture
r —
1 -
0.5 -
O e il T — T 8 T —
0 1 2 3 kw/n 4 5

Fig. 4. Transmission coefficients of 7 circular apertures and slits vs kw.
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These results can be compared to a large number of
data that have appeared in the earlier literature for the
limiting case of very small apertures, k<w — 0. In this
limit the transmission coefficients shown in Fig. 4 for
circular apertures are superficially similar to, but not
the same as those computed by Levine and Schwinger
[9,10]. In the case of narrow slits the results obtained
here do not at all agree with those published by
Bouwkamp [7]. These discrepancies will be addressed
in a subsequent publication.

4. Concluding Remarks

There are two aspects of the modified theory present-
ed in Sec. 2 that deserve further comments: its failure
to account for polarization effects and the appearance
of Kirchhoff’s integral in the context of a theory in
which metallic screens are assumed.

This work was begun in the anticipation that,
because of their pseudo-vectorial nature, the Rayleigh-
Sommerfeld integrals could be used to analyze the
polarization of diffracted light. This anticipation did
not materialize. For example, the expressions derived
in Ref. [1] for the axial values of u{) and ul}) per-
taining to a circular aperture illuminated by normally
incident light differed from each other, although in this
case symmetry would dictate the absence of polariza-
tion effects. It also seemed odd that the computed
values of u'¥) and u!;) were consistently different in
the near zone but the same in the mid zone, without any
indication how the degree of polarization could change
during the free-space propagation of light. Thus it
appeared that, in spite of the assumption of different
boundary conditions for ' and u{}, the “polariza-
tion” effects predicted by the Rayleigh-Sommerfeld
integrals were implausible.

Whereas the analysis of polarization effects was
clearly an objective of Rayleigh’s work [5,6], there is
no indication in Sommerfeld’s writings that he had the
same goal. In his derivation of Egs. (2a,b) in Ref. [4],
he did not mention polarization at all but stated that
separate wave functions and boundary conditions were
required to overcome a well-known mathematical
inconsistency of Kirchhoff’s theory. In his half-plane
work [3,4], he took the additional step of expressing the
forward and reverse wave functions in terms of the
sums and differences of these separate wave functions,
thus negating any semblance with a vectorial theory as
these expressions would otherwise imply the inter-
ference of mutually orthogonal states. Likewise, any
association of the Rayleigh-Sommerfeld integrals with
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polarized light is negated in the present paper by the
introduction of Egs. (3a) in Sec. 1. Accordingly, the
appearance of Kirchhoff’s integral in the modified
theory has no significance apart from the fact that it
happens to be the arithmetic mean of (% and u{y.
Given the fact that the modified theory no longer

pertains to polarized light, a question arises whether it
is still limited to metallic screens. It may be observed
that the Egs. (6b) and (7a) for the forward field are in
no way altered if the corresponding expressions for the
reverse field are simply ignored, as if the screen were
“black.” Thus, these expressions might also be useful
to describe the forward field v produced by a black
screen, and similarly it might be possible to describe
the diffraction by partially reflecting screens by simply
multiplying the reverse field V by a suitable amplitude
reflectance. These ideas are akin to earlier suggestions
to define blackness as the absence of reflection [11],
but cannot be justified theoretically as a metallic
screen was assumed in the first place. However, from
a pragmatic point of view it appears that the results
obtained in this manner would not be far off, and in this
context we recall Sommerfeld’s comment [4] that “a
slit scratched in a piece of tin foil produces the same
diffraction pattern, no matter if it is shiny or has been
blackened.”
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